

Journal of Photochemistry and Photobiology A: Chemistry 111 (1997) 87-96

Photophysical characterization of trans-4,4'-disubstituted stilbenes

Vladislav Papper, Dina Pines, Gertz Likhtenshtein *, Ehud Pines

Department of Chemistry, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel

Received 17 April 1997; received an experience of the total 1997; accepted 5 August 1997

Abstract

Absorption and emission spectra of twenty *trans*-4,4'-disubstituted stilbenes have been measured in four solvents: cyclohexane (CH), chlorobenzene (CB), 2-butanone (methylethyl ketone, MEK) and dimethylsulfoxide (DMSO) at room temperature. Fluorescence quantum yields (Φ_f) and fluorescence lifetimes (τ_f) have been measured for these stilbenes. The lifetimes and quantum yields of fluorescence were found to be dependent on the donor-acceptor properties of the substituents and correlate with the Hammett σ -constants. In addition, we experimentally observed the appearance of a second emitting state which is close energetically to the lowest exited singlet state ¹t* in cases of strong donor-acceptor substituents in polar solvents. \odot 1997 Elsevier Science S.A.

Keywords: Trans-4,4'-disubstituted stilbenes; Photophysical characterization; Fluorescence quantum yields; Fluorescence lifetimes

1. Introduction

Photoisomerization has been known for several decades to dominate the photophysics of *trans*-stilbenes. It has been studied extensively and reviewed [1-12]. The chemistry of stilbene derivatives is straightforward, which allows the synthesis of many functional derivatives. We have prepared twenty *trans*-4,4'-disubstituted stilbenes in order to tune the reactant's properties over a wide range of reactivities. This enabled us to carry out a comprehensive study of the effect of the substituents on stilbene reactivity.

The photochemical behavior of stilbenes may be varied by the introduction of substituents which affect the charge distribution of the molecule. We have chosen the *para*-(4,4')substituted stilbenes for our investigation of the electronic effects of the substituents on the photoisomerization reaction, because substitution in the *meta* (3,3',5,5')-ring positions has little effect on the course of the *trans-cis* photoisomerization process, i.e. the distinct conformers have similar spectra and fluorescence parameters. Substitution in the *ortho* (2.2',6,6')-positions introduces significant steric hindrance, causing the phenyl rings to twist out of plane about the double bond and changes the absorption and fluorescence spectral features.

Solvent effects are also important in determining the reactivity of *trans*-4,4'-disubstituted stilbenes resulting from their dipolar characters. However, these effects are not extensively studied in the present work and are the subject of our further research with a larger database.

It is generally accepted that the light-induced reversible isomerization of *trans*-stilbene [1-4] (Fig. 1) proceeds either from the lowest exited singlet state ¹t* through the twisted singlet intermediate ¹p* ('phantom' state):

$$t^* \rightarrow p^* \rightarrow p^* \rightarrow (1-\beta) + c^+\beta^1 t$$

or, alternatively, by the intersystem crossing pathway (ISC) through the biradical twisted triplet state ³p*:

$$^{1}t^{*} \rightarrow ^{3}t^{*} \rightarrow ^{3}p^{*} \rightarrow ^{1}p \rightarrow (1-\alpha)^{1}c + \alpha^{1}t$$

Here, ³t* and ³p* respectively are the *trans* and twisted configurations (perpendicular with respect to the C=C double bond) of the lowest triplet, ¹p is the twisted ground state, $(1 - \alpha)$ is the fraction of triplet decay into the *cis*-form and $(1 - \beta)$ is the fraction of perpendicular singlet configuration decaying into the *cis*-form.

Usually, within a reaction series the functional correlation between substituent or solvent parameters and various substituent or solvent dependent rate processes is in the form of a linear Gibbs free-energy relationship [13]. To establish a reaction series we have introduced small changes on the reaction rate in two ways.

 Modification of the stilbene molecule by introducing different donor-acceptor substituents. This leads to a Hammett-like behavior [14]. Although linear free-energy relationships usually deal with relative reactivities, in the form of reaction rate and equilibrium data, this approach

^{*} Corresponding author.

^{1010-6030/97/\$17.00 © 1997} Elsevier Science S.A. All rights reserved PII \$1010-6030(97)00234-7

Fig. 1. Pictorial representation of the *trans* and *cis*-stillene orbitals and electronic states participating in the *trans-cis* photoisomerization processes. The reaction coordinate is the torsional angle (θ) about the olefinic double bond. ¹t and ¹t^{*} are the ground state and the lowest exited singlet state of the *trans*-stillene respectively, ¹p^{*} is the twisted singlet intermediate ("phantom" state), ³t' is the *trans*-configuration of the lowest triplet, ¹c and ¹c^{*} are the ground state and the lowest triplet, ¹c and ¹c^{*} are the ground state and the lowest triplet, ¹c and ¹c^{*} are the ground state and the lowest triplet, ¹c and ¹c^{*} are the ground state and the lowest triplet, ¹c and ¹c^{*} are the ground state and the lowest triplet, state of the *cis*-stillene respectively, ¹c^{*} is the *cis*-configuration of the lowest triplet. *S*₀, *S*₁ and *T*₁ designate the potential energy surfaces of the ground singlet, first excited singlet and triplet states respectively.

Table 1 Reaction yield, crystallization solvent and melting point of *trans*-4.4'-disubstituted stilbenes

	X	Y	Yield (%)	Crystallization solvent	Melting point (°C)	Reference
1	(CH ₄) ₂ N	Br	76	Toluene	232-234	[15]
2	$(CH_3)_2N$	CN	70	1.4-Dioxane	250-251	[16]
3	$(CH_1)_2N$	NH ₂	75	_	176	[17]
4	$(CH_1)_2N$	CI	43	Chlorobenzene	219-220	[17]
5	$(CH_3)_2N$	OCH,	68	Acetone/isopropanol	185-186	[15]
6	$(CH_1)_2N$	NO ₂	35	Chlorobenzene	255	[17]
7	$(CH_3)_2N$	COOCH	63	Toluene	227-228	[17]
8	CI	NO ₂	68	Toluene	178-180	1181
9	CH ₃ O	NO ₂	72	Acetone	132-134	1191
10	CH O	CH,	82	Ethanol	167-169	1201
11	CH ₃ O	CN	76	Ethanol	149-151	[18]
12	CH ₃ O	Ci	62	Ethanol/chloroform	177-178	[21]
13	CI	CN	58	Dichloromethane	175-176	1221
14	CH,	NO ₂	68	Ethanol	150-151	[22]
15	CH,O	COOCH	78	Ethyl acetate	199-201	
16	Br	COOCH	76	Acetonitrile	171-173	
17	CH,	CN	59	Ethanol	179-181	1221
18	CH,	CI	78	Ethanol	192-194	1221
19	CH,O	NH ₂	83	_	167-168	
20	CI	NH ₂	80	—	199–200	-

can be extended to various photophysical parameters of the excited molecules.

 Solvent effects. Thermodynamically, solvation may be viewed along the same lines as substituent effects, the solvating molecules being equivalent to 'oosely attached substituents [14].

The quantitative structure-reactivity relationships based on a Hammett-like correlation with α -values of substituents can indicate the photoisomerization mechanism for different substituted stilbenes. We assume that molecules lying on the same Hammett plot belong to the same reaction series, thus having the same *trans-cis* photoisomerization mechanism. Our results discussed below support this idea. This means that we can predict the photoisomerization mechanism of substituted stilbenes in arbitrary chosen media by considering the donor-acceptor properties of their substituents. Deviations from such linear relationships may be explained by additional effects which generate an additional series of reactions.

We carried out our studies of the substituent effects on the photoisomerization rate in four solvents: cyclohexane (CH), chlorobenzene (CB), methylethyl ketone (MEK), dimethylsuifoxide (DMSO). These solvents, except DMSO, do not interact specifically with the solute stilbene molecules. For polar substituted stilbenes one may expect an increasing sensitivity of the isomerization rate to solvent effect, to the extent that it becomes more significant than the substituent effect.

2. Experimental details

2.1. Methods

2.1.1. Steady-state measurements

Fluorescence emission spectra were recorded with an SLM Aminco–Bowman spectrofluorimeter after excitation near the absorption maxima (λ_{max}), using typically a 4 nm slit width for both excitation and emission. Absorption and emission parameters of twenty *trans*-4,4'-disubstituted stilbenes (Table 1) are collected in Table 2. Quantum yields of fluorescence (Φ_f) were measured using *trans*-4-dimethylamino-4'-nitrostilbene in methylcyclohexane as the standard ($\Phi_f^{0} = 0.30$, $\lambda_{max} = 420$ nm, $\lambda_{max}^{-1} = 470$ nm) [2] including correction for absorption and intensity of the incident light, and are presented in Table 3. All the sample solutions were degassed with argon before the measurements.

2.1.2. Time-resolved measurements

A picosecond time-resolved single photon counting apparatus was used to measure the fluorescence lifetime (τ_f). The

Table 2
(a) Absorption maxima (λ_{mex}), motar extinction coefficient (ϵ_{max}) and
fluorescence emission maxima (λ_{max}^{-d}) of <i>trans</i> -4.4 ² -disubstituted stilbenes
in 2-butanone (MEK) and chlorobenzene (CB)

	x	Y	λ _{παν} (nin)		Emm (M·cm) ⁻¹		λ _{mus} ti (nm)	
			MEK	СВ	MEK	СВ	MEK	СВ
1	(CH3)2N	Dr	362	368	33760	36060	445	428
2	((Ha))N	CN	384	394	19220	24400	5114	479
3	(CH3)2N	NH2	360	362	3,9970	33400	-408	403
4	(CH3.2N	C	360	366	34360	45250	.147	425
5	(CH3pN	OCH ₃	352	356	15820	15860	418	402
6	(Cllap)N	Nip	44	417	26960	26630	697	650
7	(CH ₃) ₂ N	COOCIIA	382	388	287(5)	28100	498	478
х	CI	NUD	352	356	26810	22600		.597
9	сщо	NO2	376	380	28500	26620	539	511
10	СЦо	CHA	328	326	21550	298901	374	370
п	CH ₃ O	CN	338	3:4	34460	31820	419	397
12	CEAO	- a	328	4 41)	28300	21860	388	376
13	ci	CN	328	ંમા	38420	32370	386	380
14	CH1	NO2		376		26150		497
15	СНаО	CODCH1	3 4 8		37190	-	414	
16	Br	COOTIN	328		21740		385	
17	СНа	CN	-	334		28180	•	378
18	СНа	C		322	_	25910		564
19	СНаО	NH2			-			
20	CI CI	NHo	_	_			_	

	X	Y	λ _{iikix} (nin)		λ _{uta} u (nm)		
			េង	DMSO	СН	DMSO	
1	(CHa) ₂ N	Br	358	358	391. <u>41 1</u>	46.8	
?	(ClapN	CN	378	394	416.445	\$37	
3	(CHa)2N	NII2	332, 352	368	386, 406	422	
4	(CHanN	<u></u>	156	368	389. 410	467	
5	(CH ₃) ₂ N	ocus	348	358	383. 402	435	
6	(CHapN	NO	420	150	469, 498	_	
7	(CH2)pN	CORCHA	374	392	111.113	543	
8	a	NO ₂					
9	CH3O	NO2	372	388	· · _	610	
10	CHO	CH3_	31.6. 322	326	366	362	
11	CILIO	CN	340	44	320	433	
12	снзо	C1	310. <u>326</u>	3,30)	369	392	
13		CN	326	33()	370	387	
14	CH ₃ _	SO	56	172		551	
15	CHIO	COOCIE	140	3.14	388	440	
16	Dr	t CRICER	312	133	373	397	
17	(11,	CN	328		373	_	
18	Clia	Ci	<u>44. 318</u>		360		
19	C113()	NR	16, 333	350	386	427	
20	(1	NH2	336	350	392	455	

(b) Absorption (λ_{max}) and fluorescence emission maxima ($\lambda_{max}^{(n)}$) of *trans*-4,4'-disubstituted stilbenes in cyclohexane (CH) and dimethylsulfoxide (DMSO)

Table 3 Fluorescence quantum yield (ϕ_0) of *trans*-4.4'-disubstituted stilbenes in chlorobenzene (CB), 2-butanone (MEK) and dimethylsulfoxide (DMSO)

	х	Y	Quantum yield ϕ_0^{obs}			
			CB	MEK	DMSO	
1	(CH ₃) ₂ N	Br	0.044	0.018	0.030	
2	$(CH_3)_2N$	CN	0.015	0.024	0.109	
3	(CH ₃) ₂ N	NH ₂	0.584	0.264	0.929	
4	(CH ₄) ₂ N	CI	0.047	0.024	0.051	
5	$(CH_3)_2N$	OCH ₃	0.167	0.069	0.249	
6	(CH ₃) ₂ N	NO ₂	0.101	0.003	< 0.001	
7	(CH ₃) ₂ N	COOCH,	0.032	0.047	0.142	
8	Ci	NO ₂	0.002	_		
9	CH O	NO ₂	0.084	0.114	0.003	
10	CH ⁴ O	CH ₃	0.036	0.009	0.089	
11	CH O	CN	0.008	0.003	0.017	
12	CH ³ O	Ci	0.016	0.004	0.041	
13	Cl	CN	0.018	0.005	0.047	
14	CH ₃	NO ₂			0.006	
15	CH ₁ O	COOCH,			0.027	
16	Br	COOCH,	0.028	0.007	0.069	
17	CH'	CN	0.009	_	_	
18	CH,	Cl	0.020	_		
19	CH ₁ O	NH ₂		-	0.082	
20	Cl	NH ₂			0.179	

set-up consisted of a Ti-sapphire laser (Spectra-Physics, Tsunami laser pumped by a 10 W Beamlok Ar-ion laser) which was operated in its picosecond lasing mode (1 ps pulses at 82 MHz). The fundamental train of pulses was pulsed selected (Spectra-Physics, model 3980) to reduce its repetition rate down to typically 0.8-4.0 MHz and then passed through a doubling LBO crystal. The laser was tuned between 690 and 800 nm using the Spectra-Physics blue optics set, and the doubled frequency used for the excitation of the stilbenes was between 345 and 400 nm. The detection system consisted of a Hamamatsu 3809U 6µ multi-channel plate (MCP). The fluorescence light was focused onto the entrance slit of the MCP after passing through a 1/8 m double monochromator (CVI model CM 112). The electronic processing of the signal was done by a combination of modular nim-bin units manufactured by Ortec, Tennelec and Phillips Scientific. The instrument function was typically 25 ps and was reduced to below 17 ps when 0.1 mm slits were put in front of the sample. The time resolution of the single photon counting set-up after data processing was below 3 ps in the 25 ns full-scale range of the time-to-amplitude converter (Tennelec 824). Typical counting rates were kept below 5 kHz. The number of counts was between 4k and 10k at the peak channel and these were collected by the Tennelec PCA3 Card. Further signal processing and data analysis was done by personal computers.

The lifetimes of the first excited singlet state (τ_f) in four solvents of different polarities (CH, CB, MEK, DMSO) are presented in Table 4. An example of the time-resolved fluorescence decay profile is shown in Fig. 2.

Table 4

Excited state lifetime of *trans*-4,4'-disubstituted stilbenes in cyclohexane (CH), chlorobenzene (CB), 2-butanone (MEK) and dimethylsulfoxide (DMSO)

	x	Y	$\sigma_{\rm X} - \sigma_{\rm Y}$	Fluorescence lifetime $\tau_{\rm fl}$ (ps)			
				СН	СВ	мек	DMSO
I	(CH ₃) ₂ N	Br	1.06	168	315	206	225
2	$(CH_3)_2N$	CN	1.49	75	251	330	900
3	$(CH_3)_2N$	NH ₂	0.17	1170	1075	585	1183
4	$(CH_3)_2N$	Cl	1.06	165	325	243	597
5	$(CH_3)_2N$	OCH ₃	0.56	447	609	444	870
6	$(CH_1)_2N$	NO ₂	1.61	939	1830	126	—
?	$(CH_3)_2N$	COOCH ₃	1.28	144	298	549	1353
8	CI	NO ₂	0.55		66	-	_
9	CH ₃ O	NO ₂	1.05	_	1253	560	1527
10	CH ₃ O	CH,	0.10	207	153	78	117
11	CH,O	CN	0.93	20	24	15	45
12	CH'O	CI	0.50	69	49	32	64
13	Cl	CN	0.43	60	59	38	75
14	СН	NO ₂	0.95			67	1005
15	CH,O	COOCH,	0.72	48		21	66
16	Br	COOCH ₁	0.22	15		61	108
17	CH,	CN	0.83	111	30		
18	CH ₃	CI	0.40	22	68		
19	CH O	NH ₂	0.39	51			99
20	CI	NH ₂	0.89	531	_	-	207

Fig. 2. Time-resolved fluorescence decay profile of 4-methoxy-4'-cyanostilbene in methylethyl ketone (concentration 8 μ M). The instrument function (solid line) is 20 ps, and the experimental data (dois) were fitted after convolution by $\tau_n = 15$ ps with $\chi^2 = 0.8$.

2.2. Materials

2.2.1. Reagents and solvents

The following commercial solvents and reagents were methylcyclohexane (spectrophotometric grade, used: Merck), toluene, methanol, petroleum ether (40-60°), acetone, isopropanol, 1.4-dioxane, ethanol, chloroform, ethyl acetate, dichloromethane (chemically pure, Frutarom, Israel), xylene (spectrophotometric grade, Merck), 2-butanone (spectrophotometric grade, Aldrich), chlorobenzene (spectrophotometric grade, Merck), triphenylphosphine (Merck), LiOCH₃ (1 M solution in absolute methanol, Aldrich), carbon tetrachloride (analytical, Frutarom, Israel), benzoyl peroxide (Aldrich), N-bromosuccinimide (Merck), 4-nitrobenzaldehyde, 4-methoxybenzaldehyde (4-anisaldehyde), 4-chlorobenzaldehyde. 4-dimethylaminobenzaldehvde. 4-tolualdehyde. 4-bromobenzyl bromide, 4-methoxybenzyl chloride, 4-toluonitrile, 4-nitrotoluene (Aldrich).

2.2.2. Synthesis of stilbene derivatives

The following substituted stilbenes were prepared by the procedure outlined elsewhere [17]: trans-4-dimethylamino-4'-nitrostilbene, trans-4-dimethylamino-4'-chlorostilbene, trans-4-dimethylamino-4'-chlorostilbene, trans-4-dimethylamino-4'-aminostilbene ¹H NMR spectra were taken at 298 K on a 500 MHz Bruker Fourier transform spectrometer, equipped with a DMX Avance system and Bruker UXNMR program with Me₄Si as the internal standard on 10% w/v solutions in CDCl₃ or DMSO-d₆. Melting points were determined on a Kofler melting apparatus and are uncorrected. UV absorption spectra were recorded on a Hewlett-Packard UV-visible 200HP spectrophotometer. Preparative column chromatography was performed with silica gel 60 (Merck, 230-400 mesh AS'fM).

4-substituted benzyl bromides. 4-cyanobenzyl bromide and 4-nitrobenzyl bromide were prepared from the corresponding 4-substituted toluenes by bromination with N-bromosuccinimide in dry carbon tetrachloride in the presence of benzoyl peroxide [16]. Methyl α -bromo-4-toluate was prepared by a modified method of Fuson and Cooke [23].

Preparation of triphenylphosphonium salts. The required triphenylphosphonium salt was prepared from the corresponding 4-substituted benzyl bromide and triphenylphosphine in toluene [16]. In short, 10 mmol of benzyl halide and 12 mmol of triphenylphosphine were dissolved in 50 ml of toluene, and the reaction mixture was heated at 80–90 °C for 6–7 h. The precipitated salt was collected and washed twice with acetone and petroleum ether and then dried in a vacuum oven at 140 °C overnight. All of the salts were purified by recrystallization and yielded satisfactory melting points compared with the literature values [16]. 4-(carbom-ethoxybenzyl)triphenylphosphonium bromide and 4-(bromobenzyl)triphenylphosphonium bromide were subjected to elemental and ¹H NMR analyses which proved their chemical purity and structural identity.

Preparation of substituted stilbenes. 10 mmol of the corresponding triphenylphosphonium salt and 11 mmol of the 4-substituted benzaldehyde were dissolved in 25 ml of absolute methanol. 25 ml of 0.4 M lithium methoxide solution in absolute methanol was added, and the reaction mixture was stirred intensively at room temperature for 10-15 min. The resulting solution was left to stand overnight at room temperature to provide the precipitation of the product. The precipitated crystals of the trans-isomer were collected and recrystallized (Table 1). The mother liquor containing mostly the *cis*-isomer was concentrated in a vacuum rotary evaporator, and the precipitated crystals of the cis-isomer were collected and treated with the iodine solution in xylene to promote the cis to trans back isomerization and formation of the required trans-isomer [16]. All these compounds were purified by column chromatography on silica gel and recrystallization. The structures were confirmed by ¹H NMR and mass spectroscopy; meiting points were in a good agreement with the literature values (Table 1).

All of the new stilbenes, *trans*-4-dimethylamino-4'-carbomethoxystilbene, *trans*-4-carbomethoxy-4'-bromostilbene and *trans*-4-carbomethoxy-4'-methoxystilbene, were subjected to elemental and ¹H NMR analyses, and mass spectroscopy.

Trans-4-dimethylamino-4'-carbomethoxystilbene. ¹H NMR (CDCl₃): δ 3.00 (s, 6H Me₂N); δ 3.91 (s, 3H MeOOC): CH=CH AB pattern δ 6.92 (d, vinyl 1H), δ 7.16 (d, vinyl 1H); 4-Me₂N-Ar AA'XX' pattern δ 6.71 (d, 2H: H3, H5), δ 7.43 (d, 2H: H2 H6); 4-MeOOC-Ar AA'XX' pattern δ 7.51 (d, 2H: H2' H6'), δ 7.98 (d, 2H: H3', H5'). Analysis found: C, 77.12; H, 6.89; N, 4.91, C₁₈H₁₉NO₂ calculated: C, 76.84; H, 6.81; N, 4.98.

Trans-4-carbomethoxy-4'-bromostilbene. ¹H NMR (CDCl₃): δ 3.91 (s, 3H, MeOOC); CH=CH AB pattern δ 6.60 (d, vinyl 1H), δ 7.09 (d, vinyl 1H); 4-Br-Ar AA'BB' pattern δ 7.35 (d, 2H: H3, H5), δ 7.40 (d, 2H: H2, H6); 4-MeOOC-Ar AA'XX' pattern δ 7.54 (d, 2H: H2', H6'), δ 7.97 (d, 2H: H3', H5'). Analysis found: C, 60.28; H, 4.19; Br, 25.44. C₁₆H₁₃BrO₂ calculated: C, 60.59; H, 4.13; Br, 25.19.

Trans-4-carbomethoxy-4'-methoxystilbene. ¹H NMR (CDCl₃): δ 3.85 (s, 3H, MeO); δ 3.91 (s, 3H, MeOOC); CH=CH AB pattern δ 7.00 (d, vinyl 1H), δ 7.18 (d, vinyl 1H); 4-MeO-Ar AA'XX' pattern δ 6.87 (2, 2H: H3, H5), δ 7.46 (d, 2H: H2, H6); 4-MeOOC-Ar AA'XX' pattern δ 7.54 (d, 2H: H2', H6'), δ 8.01 (d, 2H: H3', H5'). Analysis found: C, 75.82; H, 6.36. C₁₇H₁₇O₃ calculated: C, 75.49; H, 6.40. Mass spectroscopy: 269 M ⁺ 100%, 238 [M⁺-OCH₃] 10%.

3. Results and discussion

In this study we have measured the fluorescence lifetime $\tau_{\rm f}$ and quantum yield $\Phi_{\rm f}$ of various *trans*-stilbene derivatives. Generally speaking, the $\tau_{\rm f}$ may be expressed as

$$\tau_{\rm f} = (k_{\rm r} + k_{\rm nr} + k_{\rm t-sc})^{-1} \tag{1}$$

where k_r and k_{nr} are the radiative and non-radiative decay rate constants respectively and $k_{t\to c}$ is the *trans-cis* photoisomerization rate constant.

In most cases studied $k_1 \, \cdot_c \gg k_r$ and $k_1 \, \cdot_c \gg k_{nr}$, so to a good approximation $\tau_1 \approx (k_1 \, \cdot_c)^{-1}$, and

$$\Phi_{i} = k_{r} / (k_{r} + k_{nr} + k_{i \to c}) \approx k_{r} / k_{i \to c}$$
⁽²⁾

So, both τ_i and Φ_i are mainly determined by the *trans-cis* photoisomerization rate.

A commonly accepted model for *trans-cis* isomerization of stilbene assumes a one-dimensional reaction coordinate θ , which is the torsion (twist) angle about the olefinic double bond [2–5,12] (Fig. 1) The transition state allowed for the *trans-cis* isomerization in the excited singlet state is expected to be polarizable and involve zwitterionic structures which lower the barrier to the torsional motion, facilitating the isomerization reaction.

The charge separation associated with this reaction may be stabilized intramolecularly by polar 4,4'-substituents on the aromatic rings of stilbenes, or externally by polar solvents. The former is a Hammett-like mechanism, while the latter involves media-stabilizing effects on the transition state. Assuming the dielectric response of the solvent is fast compared with the twisting motion, both effects may be described quantitatively in terms of free-energy relationships. Therefore, solvent polarity affects the excited energy level of the twisted ${}^{1}p^{*}$ intermediate (TSI) by stabilizing its separated charges and consequently lowers the intrinsic barrier to ${}^{1}t^{*} \rightarrow {}^{1}p^{*}$ torsional distortion.

For *trans*-4,4'-disubstituted stilbenes without strong donor-acceptor substituents one expects $k_{t\rightarrow c}$ to increase with solvent polarity and with the ability of the 4.4'-substituents to stabilize the charge separation in the excited state. A good measure for the substituent effect is the difference between the Hammett σ -values of the 4,4'-substituents. In such cases the energy of the more polar 'phantom' state, ¹p*, is lowered in comparison with the energy for the *trans*-singlet state, ¹t*, so the activation free energy for the *trans*-cis photoisomerization is reduced and $k_{t\rightarrow c}$ increases.

In contrast, strong donor-acceptor substituents are able to stabilize the ¹t* compared with the ¹p* state, so the activation energy increases and the isomerization rate decreases (Fig. 3). A ¹p* state of low polarity is in fact predicted by quantumchemical calculations for strong donor-acceptor stilbenes, whereas for non-polar stilbenes a very highly polar ¹p* state is expected [24,25]. This switching from high to low polarity of the ¹p* state is the result of the biradicaloid nature of this state, which undergoes 'sudden polarization' [26].

Figs. 4 and 5 demonstrate the linear dependence of $\log(1/\tau_1)$ and $\log \Phi_{\rm r}$ on $(\sigma_{\rm X} - \sigma_{\rm Y})$, where X and Y denote the two *para*-substituents at the opposite 4 and 4'-phenyl ring positions. Inspection of Figs. 4 and 5 shows that apart from stilbene derivatives which include the strong donor dimethylamino substituent at one of the *para*-positions, all

Fig. 3. Schematic representation of potential energy curves of the excited singlet state ¹t* (left) and excited singlet twisted state ¹p* (right) for the different groups of *trans*-4,4'-distributed stilbenes in different polar solvents.

Fig. 4. Plot of the fluorescence decay rate of the 't* state vs. Hammett σ -constant difference ($\sigma_N - \sigma_N$) for *trans*-4.3'-disubstituted stilbenes. The four experimental series are (a) in CH. (b) in CB. (c) in MEK, and (d) in DMSO. Concentration of the samples was 8 μ M. ($\sigma_N - \sigma_N$) was calculated as the difference between the σ -constants of the two 4.4'-positioned substituents (X and Y) taking in account their relative sign. The group I stilbenes are designated by open squares, and the group II stilbenes by dots. The 4-nitro-derivatives deviating from the linear dependence are designated by open circles. Lifetime (τ_{π}) is given in nanoseconds (ns).

other substituted stilbenes follow the same trends of reactivity.

Moving from the less polar solvents to the polar solvents, the photoisomerization rate increases with the polarity of the solvent, and the slope of the linear dependence (ρ -value) between ($\sigma_x - \sigma_y$) and log($1/\tau_t$) decreases. This shows that solvent polarity levels off the intramolecular effect of polar substituents. When one of the two substituents is the $(CH_3)_2N$ group, the photoisomerization rate decreases considerably but usually follows the general trends described above with a smaller ρ -value.

The situation may be summarized with the aid of Fig. 6, as follows.

Group I stilbenes (trans-4,4'-disubstituted stilbenes without strong donor-acceptor substituents) have the charges separated and localized around the zwitterion in the excited

Fig. 5. Plot of the fluorescence quantum yield vs. Hammett σ -constant difference ($\sigma_N - \sigma_V$) for *trans*-4.4'-disubstituted stilbenes. The three experimental series are (a) in CB, (b) in MEK and (c) in DMSO. Concentration of the samples was 8 μ M. ($\sigma_N - \sigma_V$) was calculated as the difference between the σ -constants of the two 4.4'-positioned substituents (X and Y) taking in account their relative sign. The group I stilbenes are designated by open squares, and the group II stilbenes by dots. The 4-nitro-derivatives deviating from the linear dependence are designated by open circles. Quantum yields (f_h) are given in per cent.

singlet ¹t* state. These separated charges are expected to be considerably localized in the ¹t* state and, therefore, undergo the fast ¹t* \rightarrow ¹p* reaction with a high rate constant, 1/ τ_{f} . For such stilbenes, both polar substituents and polar solvents are expected to stabilize the twisted intermediate ¹p* compared with the less polar ¹t* state. So, an increase in the isomerization rate is expected and indeed observed for both cases.

The Hammett-like correlation is excellent in all investigated solvents. In this case, with decreasing ρ -values as the polarity of the solvent increases, both quantum yield and lifetime measurements have similar substituent dependence, indicating a similar isomerization mechanism along the group. This means that in the case of non-polar or slightly polar stilbenes without strong donor-acceptor substituents, the primary effect of solvent polarity will be on the transitionstate energy, and a singlet *trans-cis* photoisomerization pathway similar to that occurring with the parent stilbene molecule may be assumed. This may imply that the twisted intermediate ¹p* needs to assume a specific structure about the twisted double bond regardless of the chemical nature of the substituents.

Fig. 6. Classification of trans-4.4'-disubstituted stilbenes according to the substituent effect on the excited singlet "t* state.

Group II stilbenes have the strong donor substituent $(CH_3)_2N$ in the *para*-position on the aromatic ring. They are characterized by a large red shift in both the absorption and the fluorescence spectra of the *trans*-stilbenes. The $(CH_3)_2N$ group participates in charge delocalization in the ¹t*-state, thus stabilizing it in comparison with the ¹p*-state. This causes an increase in the ¹t* \rightarrow ¹p* activation energy and a drop in the transition rate with a low rate constant, $1/\tau_f$.

Polar *para*-substituents on the second ring cause similar electronic-inductive effects as in the case of the first group stilbenes, but these effects are of smaller amplitudes (smaller ρ -value means less sensitivity of the transition state to substituent effects). This means that the stabilizing effect of the (CH₃)₂N group on the ¹t* state is more pronounced than the polar stabilization of the ¹p* state.

As can be seen in Figs. 4 and 5, a change of solvent affects the two stilbene families by an almost identical amount. Comparison between quantum yield and lifetime measurements of the second stilbene group indicates that, contrary to group I, the quantum yields in group II are much more sensitive (larger ρ -value) to substitution than the lifetimes. This means that substitution must also affect the non-radiative and the radiative channels of group II stilbenes. Therefore, in group II the *trans-cis* photoisomerization mechanism is more complex than that assumed for group I and includes a combination of singlet, triplet and intramolecular charge transfer pathways and is dependent on the specific nature of the *para*substituent.

For example, 4-dimethylamino-4'-bromostilbene deviates from the linear Hammett plot of both the fluorescence lifetime and quantum yield in the relative polar MEK and DMSO solvents. In this case, the non-radiative decay pathway which takes over [6,8] is responsible for this deviation.

The two following stilbenes with strong donor-acceptor pairs of substituents ($D \equiv (CH_3)_2N$, $A \equiv CN$, COOCH₃), so called 'push-pull' stilbenes, *trans*-4-dimethylamino-4'cyanostilbene (DACS) and a new *trans*-4-dimethylamino-4'-carbomethoxystilbene (DACMS), deviate from the linear dependence of log($1/\tau_f$) and log Φ_f on the Hammett σ -constants only in polar media and may be considered separately (conveniently designated as 'group III', although these molecules do not necessarily conform to the same *trans-cis* photoisomerization pathway). These derivatives exhibit very large red shifts, compared with groups I and II and fall below the linear Hammett plot. The formation of a twisted intramolecular charge transfer (TICT) structure in the excited singlet state may be responsible for this behavior [27-30].

The presence of two time-resolved emission bands (from the ¹t* and TICT states respectively) was reported for DACS where the existence of a TICT state was assumed [30,24]. We have also observed two emissive bands in DACS and DACMS dissolved in MEK and DMSO using high-resolution picosecond time-resolved measurements. This supports but does not prove the existence of a TICT state in DACS and DACMS. A subsequent publication will be devoted to this phenomenon.

The deviation of the 4-nitro-substituted stillbenes from the linear Hammett-like behavior is more complex and is attributed to a specific interaction of the nitro-group which quenches the charge-transfer state emission. In these cases a non-emissive TICT state was assumed [25,26].

4. Conclusion

In this study we show that the effect of 4,4'-substitutions on the isomerization reaction of *trans*-stilbenes may be correlated by their corresponding Hammett σ -values.

Donor-acceptor pairs of 4.4'-substituents usually increase the rate of the ${}^{1}t^{*} \rightarrow {}^{p}t$ transition owing to the stabilization of the more polar ${}^{i}p^{*}$ state. Solvent polarity affects this transition in a similar way, so the rate of the *trans-cis* isomerization reaction is increased by both polar solvents and polar substituents. A second group of substituents tends to participate in charge delocalization in the ${}^{1}t^{*}$ state. This electronic resonance interaction in the ${}^{1}t^{*}$ state destabilizes the transition to the ${}^{1}p^{*}$ state and retards the isomerization reaction. Our study also supports the existence of a third group of substituents which cause the formation of an additional charge transfer state appearing below the ¹t* state. The transition from this state to the ¹p* state is much slower than the transition from the ¹t* state. The charge transfer state becomes important in cases of strong donor-acceptor interactions and manifests itself by a large red shift in both the absorption and the emission spectra. It also causes large deviations from the linear Hammett plots. These two effects may help in identifying the appearance of a new emitting state which complicates the photophysical behavior of substituted *trans*stilbenes.

Acknowledgements

The authors wish to thank Professor Jack Saltiel for his valuable comments and Vladimir Khodorkovsky for his advice in organic synthesis. Ehud Pines thanks the German-Israeli James Franck Program on Laser-Matter Interactions for its financial support.

References

- [1] (a) J. Saltiel, J. D'Agostino, E.D. Megarity, L. Metts, K.R. Neuberger, M. Wrighton, O.C. Zatiriou, in O.L. Chapman (ed.), Organic Photochemistry, Vol. 3, Marcel Dekker, New York, 1973, p. 1. (b) J. Saltiel, Y.-P. Sun, in H. Durr, H. Bouas-Laurent (eds.), Photochromism, Molecules and Systems, Elsevier, Amsterdam, 1990, p. 64.
- [2] D.H. Waldek, Chem. Rev., 91 (1991) 415.
- [3] N.S. Park, D.H. Waldek, J. Chem. Phys., 91 (1989) 943.
- [4] H. Meier, Angew. Chem., 31 (1992) 1399.
- [5] (a) J. Saltiel, A.S. Waller, D.F. Sears, E.A. Hoburg, D.M. Zeglinski, D.H. Waldek, J. Chem. Phys., 98 (1994) 10689, (b) J. Saltiel, Y. Zhang, F.S. Donald, J. Am. Chem. Soc., 118 (1996) 2811. (c) J. Saltiel, Y.-P. Sun, J. Phys. Chem., 93 (1989) 6246. (d) J. Saltiel, A.S. Waller, D.F. Sears, J. Am. Chem. Soc., 115 (1993) 2453.

- (a) H. Gruen, H. Görner, J. Phys. Chem., 93 (1989) 7144. (b) H.
 Görner, H. Kuhn, J. Adv. Photochem., 19 (1995) 1.
- [7] (a) S.K. Kim, G.R. Fleming, J. Phys. Chem., 92 (1988) 2168. (b)
 S.H. Courtney, G.R. Fleming, J. Chem. Phys., 83 (1985) 215. (c)
 G.R. Fleming, S.H. Courtney, M.W. Balk, J. Stat. Phys., 42 (1986) 83.
- [8] D. Gegiou, K.A. Muszkat, E. Fischer, J. Am. Chem. Soc., 90 (1968) 3907.
- [9] R.M. Hochstrasser, Pure Appl. Chem., 52 (1980) 2683.
- [10] D. Schulte-Frohlinde, H. Blume, H. Gusten, J. Phys. Chem., 66 (1962) 2486.
- [11] S. Malkin, E. Fisher, J. Phys. Chem., 68 (1964) 1153.
- [12] J. Saltiel, J. Am. Chem. Soc., 89 (1967) 1036; 90 (1968) 6394.
- [13] E.S. Lewis, Linear Free-Energy Relationships, In C.F. Bernasconi (ed.), Investigation of Rates and Mechanisms of Reactions, Vol. IV, Techniques in Chemistry Series, Wiley, New York, 1986, Part I, 4th edn.
- [14] J.E. Leffler, E. Grunwald, in Rates and Equilibria of Organic Reactions, Wiley, New York, London, 1963.
- [15] M. Syz, H. Zollinger, Helv. Chim. Acta, 48 (1965) 517.
- [16] G. Manecke, S. Lüttke, Chem. Ber., 103 (1970) 700.
- [17] G.I. Likhtenshtein, B. Rizak, V. Papper, B. Uzan, I. Fishov, D. Gill, A.H. Parola, J. Biochem. Biophys. Methods, 33 (1996) 117
- [18] H. Meerwein, E. Büchner, K. Van Emster, J. Prakt. Chem., 152 (1939) 259.
- [19] R. Ketchani, L. Martinelli, J. Org. Chem., 27 (1962) 4666.
- [20] T. Troxler, M.R. Topp, B.S. Metzger, L.H. Spangler, Chem. Phys. Lett., 238 (1995) 313.
- [21] R. Neher, K. Miescher, Helv. Chem. Acta, 29 (1946) 460.
- [22] P. Pfeiffer, Ber. Dtsch. Chem. Ges., 48 (1915) 1777.
- [23] R.C. Fuson, H.G. Cooke, J. Am. Chem. Soc., 62 (1940) 1180.
- [24] R. Lapouyade, K. Czeschka, W. Majenz, W. Rettig, E. Gilabert, C. Rulliere, J. Phys. Chem., 96 (1992) 9643.
- [25] R. Lapouyade, A. Kuhn, J.-F. Letard, W. Rettig, Chem. Phys. Lett., 208 (1993) 48.
- [26] J. Michl, V. Bonacić'-Koutecky', Electronic Aspects of Organic Photochemistry, Wiley, New York, 1990.
- [27] (a) E. Gilabert, R. Lapouyade, C. Rulliere, Chem. Phys. Lett., 145 (1988) 262. (b) D.M. Zeglinski, D.H. Waldeck, J. Phys. Chem., 92 (1988) 692.
- [28] W. Rettig, B. Strehmal, W. Majenz, Chem. Phys., 173 (1993) 525.
- [29] A. Klock, W. Rettig, Pol. J. Chem., 67 (1993) 1375,
- [30] W. Rettig, W. Majenz, Chem. Phys. Lett., 154 (1989) 335.